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SECTION 1

INTRODUCTION

This report is the first in a series of reports to appear on

analytic studies of general SGEMP phenomena. They are intended to investi-

gate the physical phenomena involved in the generation of skin currenti,

surface charge densities, and electromagnetic fields, and in coupling

mechanisms to internal circuitry. It is hoped to provide at least a

qualitative and preferably a quantitative understanding on theoretical
grounds, to provide a physical understanding of the various computer code

results obtained to date, and to help in predicting expected order of magni-

tude effects on real three-dimensional targets.

The spirit of our approach is to adopt Fermi's philosophy that

"one should never do a (detailed) calculation until one already knows what

the answer is." We wish to outline the basic physics of SGEMP phenomena so

that we have a sound theoretical framework in terms of which we can under-

stand the more detailed computer results.

The present report deals with the steady state electron emission

boundary layer. In the future we hope to study the time-dependent transient

build-up of the layer.

T9 we think of the chronological sequence of events occurring in

a typical SUGMP problem, we have first the arriving X rays illuminating the

exposed satellite surfaces and ejecting photoelectrons. These electrons

constitute an electric current which is the basic driver of Maxwell's

3



eqiiations. The exposed surface is left positive and this positive charge

flows away on the satellite surface producing the skin currents.

The photoelectrons above t0. positive surface produce a strong

normal elactric field. At relatively high fjuences. large numbers of low-

energy electrons are held back by this field and congregate near the surface,

producing a boundary layer of relatively dense charged plasma. Of the

subsequently emitted electrons, only the more energetic ones can penetrate

the potential of this layer and move through space around the satellite.

Hence the bowLdary layer greatly affects electrons that penetrate

it by reducing their energy. Also, the layer constitutes a dipole layer

producing its own external field. In addition, the structure of the layer

near the edges of exposed surfaces will determine how the electrons flow

around the edges, and may help in understanding the surge of replacement

current around the sides.

The boundary layer structure is a function of the X-ray fluence,

time history, and energy spectrum, and the photoelectric yield of the target.

Its thickness can be less than a millimeter for high fluences and soft

spectra, and larger than the satellite dimensions for hard spectra and low

fluences so that it hardly exists. This wide range of thicknesses makes it

difficult to handle by a single technique in SGEMP codes designed for a

wide range of fluences and spectra.

In this report we study the structure of the boundary layer in

the steady-state approximation and in one dimension. In this case the

problem can be reduced to quadratures, and so solved completely. Previous

workers have investigated various aspects of this problem1 , 2 ,0. Here we

consolidate these previous results from a unified point of view and present

some new results of interest.

4
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SECTION 2
CHARACTERISTIC DIMENSIONS

Figure I shows a sketch of the relevant geometry. The z direc-

tion is normal to the surface. The X rays are incident from

above in the normal direction. Electrons are ejected upward with some

angle and energy distribution. In the steady state, the electron number

density n(z), electric field E(z), and potential 4(z) will all be single

valued functions of z.

Let w be a characteristic energy of the emitted electrons, and

v I 2Wllm,()

he a characteristic velocity. The electron number density at the surface,

n(O), which includes both emitted and returning electrons, defines a plasma

frequency u1) by
P4

p inWp= n(O) (2)

The energy w1 defines the characteristic dimension kD' the Debye

length, by

z -- 1 (3)
4ie'n(O) -

This is the distance over which n, E, and @ vary appreciably.

5
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X rays$

z

E(z)
Electrons n(z)

Surface

Figure 1. Sketch of geometry.

The other dimensional unit of distance is e2/w. But this is not
2

a plasma quantity and is at any rate exceedingly small. Since e r 1.44 x

c10 ke m c, and w1 is a few keV, e /wI < 10 cm, and is not a dimension

of concern. It is the distance of closest approach of two electrons with

relative energy w1.

The average distance betwcen electrons is

n(- 1/ 4 2)13> e2 (4)

2
If electrons are ejected at a rate r 0 (electrons/cm /sec), which

is the product of the material yield Y(elecs/cal) and the X-ray flux do/dt

(calories/cm2/sec),

ro y c electrons (S)
dt cm2 sec

then the number density at the surface will be on the order of

6
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2r0
r0  3

n(0) ~ - elecs/cm3, (6)
v1

and the total number of electrons will be on the order of

Ns~ n(O)• elecs/cm (7)47Te

The surface charge density a will be

a = eNs - `mvlro/4T esu/cm2  (8)

aad is, curiously, independent of the electron charge. If e were not a

constant, for example if it were larger, each ejected electron would leave

behind more charge, but the electrons would return more rapidly to the surface,

so that in the steady state a does not depend on e.

Likewise the surface electric field, E(O), will be of order

E(O) = 47r0 - Y4Trmv 1r0  esu , (9)
/2

and is also independent of e. Both a and E(O) increase as r 0  and there-

for:. with the square root of the fluence.

The potential •1 of the surface relative to a distant point will

be of" order

~ E(O)2 - 4T•e (0) 9' (10)

Thus the c6aracteristic potential depends only on the electron energy

spectrum, and is independent of fluence.

Tau di:iole moment per unit area of the boundary layer will be of

order

w1
P eNN k = D su-cm/cm , (I)

S 1) D 4te

7



also independent of fluence. Thus one might expect that the quasi-static

field produced by the boundary layer's dipole moment will become relatively

less and less important as fluence increases since this field is independent

of fluence whereas other sources of dynamical fields increse with fluence.

The kinetic energy stored in the moving electrons will be of order

~1 2 mVlro2

K -wIN - mvI ergs/cm2  (12)is 2~N4're2

and the energy stored in the electric field will be of order

2 ~24U ~E(02 £ ~K ergs/cm2()

8'r D

Later we show that general principles actually imply that U 2K exactly

for the normal component of motion. Subsequent detailed calculations in this

report confirm all of the above dimensional arguments.

TIME CONSIDERATIONS

The characteristic turn around time for an electron trajectory will

be of order

St 1 (14)
p P 8 rer0

We estimate t 1 when w1  2 keV, Y 1.25 x 1013 elec/cal (2 keV blackbody

on Aluminum), and the X-ray pulse FWI1N is 3 shakes. Then

t ~ 1.4 10 nanosec
I F(cal/cm2)

where ¢ is the X-ray fluence, and we have approximated d&p/dt in Equation 5

by its average value ý/2 F-WIN. Hence for fluences above l0 3 cal/cmi,

t 1 1, 1 ns. This indicates that the stcady-state solutions discussed in this

i l .... . ... . ... .. . . ... . .. .... ... .... ..8



report will be applicable when the X-ray flux is not changing appreciably
. , _- cl /c

over times of order 1 ns at 10 3 cal/cm or of order 0.1 ns at 10 1cal/cm

The steady-state solution should begin to become a good approxima-

tion when the total number of electrons ejected
t

N(t) dt elecsicr- , (16

0

is larger than the steady-state number

N ~ t (t) , (17)

from Equation 7. Assuming a triangular time pulse with a rise time t rise'

and a full pulse width T = 2 FWIL'II

T•T_ _ 0 < t t (18}dt T t. t ri~e (l'
rise

for the rising portion of the pulse. Using 18 and equating It, anJ I- one

obtains

MIV

t t (19

or

t 2.2, L lkeI t i•hake,;\ Iishakuesl n _ (20)

Using Y -- 1.25 1) " lec;cal, = T shakt,. t 1 shakc, W I ke\.

= ,~/m 1. ni.~fo,.eC , t21

(,:.[ l/CM-)

which -;iri,-. from 10 to 1 ns i;,., increi,ýc- fro'i 10 to 10o C"al/,'m

9



SECTION 3

THE RELATION BETWEEN EMISSION ANGULAR DISTRIBUTION
AND NOMAL ENERGY DISTRIBUTION

In our one-dimensional problem only the normal component of motion

is affected. Electrons are ejected with some energy and angle distributinn
2d-n/dwd.5 (electrons/cm sec keV ster), but the dynamics influences only the

z component of velocity v. The emission energy distribution is

dn f d2n electrons (22)
dw dwdQ 2cm sec keV

with the integral taken over .ne emission hemisphere, and the three-dimensional

velocity distribution is

3 2d n a dn electrons )

dAv v dwdP. cm2 sec (cmlsec)•

The z component of velocity is distribtited according to

dn d3n
= dv dvdv f x d d3V

afdv, fdwd d ,2J

0 0

where

1I0
I.- ----------



and • is the azimuth angle. We now assume the emission spectrum factorizes

into energy and angle parts,

d2 n dng
dwd- g( .) , (26)

where 8 is the polar angle from the normal as in Figure 1. Then using

dw - mvldvj, valid when v is hc-ld fixed,

dn dw ±n gd . (27)
Tv dw

z

where

V= m , (28)z 2 z

is the normal component of energy. We now assume the emission is a cosO
distribution,

IV
(, -•cosO =Z

7T fly

which is close to the experimental facts and to the distribution predicted

by the code QUICKE2. In this case, Equation 27 yields for the distribution

of w,

dn -d dn electrons . (29
Z (cm- sec keV)

The following several examples of energy distributions dn/dw with a costO

angle distribution ard the resulting dn/dw are instructive.

1. MIonoenergetic

dnd- W (30)

11
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rS

dn ro

dw a 0(w - wz) ( (31)
z I

where 0(x) is the unit step function O(x) - I if x > 0, 0(x) a 0 if x < 0.

A monoenergetic cosO distribution produces a constant wz distribution.

2. Constant

dn r(0
-= w- (w1 " w)

rw w w
dn r 0 WlI

d =- kn- 0 < w, < w (33)
dwz wI w

3. Linear Increase

dn 2row
dI 2 0 < w < wI (34)

w1
WI

dn 2r0
0< <

dv - 0 (1 ) , 0< .<w (35)
- 1l

A linearly increasing cosO distribution produces a linearly decreasing w.

distribution.

4. Linear Decrease

dn 2r0
d = (w- w) 0w 1 , (36)

Wi

dn r 0 W
di w wI tn w - 0 < w - wI , (31.

S. Exponential

dn ro 0 "Ww 1dw(38)

12



dn ro ~ edx

z I
w /w
z 1

r0S-E (w lw), 
(39)

w II z I

where EY(x) is the exponential integral. This case is of interest because

actual electron energy spectra when blackbody photon sources are incident

are very nearly exponential". Note dn/dwz diverges logarithmically as w. 0.

6. Linear Times Exponential

dn ro0  "w/w
d- .- we , (40)

w I

dn 1 z/IdT - -- = W ( 4 1 )

Here the z "component" of energy is exponentially distributed. The energy

spectrum 40 is essentially an exponential with the low-energy electrons
deleted. Hence, comparing results for cases S and 6 above will indicate the

effect of the low-energy electrons. For example we shall find that the

slope of the charge density. dp/dz, at z - 0 diverges for case S but is

finite for case 6. Equation 40 is also the emission energy spectrum for
particles of a Maxwellian gas escaping through a small hole.

These six energy spectra are sketchied in Figure 2. The cosO
distribution always enhances the low energy end of dn/dw. In particular

dn/dw diverges logarithmically as w 0 if dn/dw is non-zero as w - 0.

13
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Case 1 
Case 2

dn/dw \dn/dwz

dn/dwz - dndw

Case 3 Case 4 j

L~dn/dw

2

dn/dw 2  dn/d
%b 

wI

case 5Case 6

d/ "" ..dn/d4,

Figure 2. Normal energy distributions from several
coso distributions.
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SECTION 4

SOLUTION FOR BOLTZMANN DISTRIBUTION FUNCTION

The problem may be set up by solving for the scalar potential 4

from Poisson's equation

V2 it a 4'rp(z) (42)
3z

and for the particle motion from the time independent Boltzmann equation

for the distribution function f

v If i E f F(z) af 0, (43)m v z -z a -o z

where

a,
E(z) - - - (44)

and

P(Z) - - v f (45)

By dividing 43 by -evzE(z), and using E(z)dz A -dt, and dwZ - mvzdv., we

obtain

ef * fw aw--'•• o .(46)

the general solution to which is any function of w -0.

f =f(w- - co) (47)

15
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The correct function to use in 47 is obtained by matching the boundary

condition on f at the emission surface, obtained as follows.

The differential rate of emitting electrons is f(z * O)vz and is

given by Equation 23,

d3 n m d2 n elecs(z - o )v 2- .... ,
d = T3v w cm2 sec (cm/sec) 3

Again assuming a cose distribution, we have

f(z _ 0) m L cose
vvz dw n

m dn
7ry 2 dw

M 2 w dw (49)

The distribution of v is obtained by int,,grating out the v and v dependence

to the one-dimensional distribution tunction

r(z.-: 3• dvxdvy f(z,') , (50)

so that

f(z Ov,) • fdVxdVy f(Ov)

• 0 dw 
(51

W.

Since Equation 16 also holds for fi, 47 implies, with the help of 29,

w - eO
z

dn (w - CO)
d2m d , (S2)

16



We have multiplied by a factor of 2 in Equation S2 to account for the return-

ing electrons in the steady state, and have taken *(z 0 0) * 0.

The charge density 45 is then

P(z) - e fdv f1

0

dw 2  dn
-- eV f; -, (S3)

dni
An alternate expression can be obtained with L by using the first line of

""quation 52 uO interchanging the order of integrations on v, and w,

t dw dn
-2eV'ISJ--y ea (54)

These arguments and some in the following section are similar to those of

Higgins'.

17



SECTION 5

SOLUTION OF POISSON EQUATION

With p given by 53 or 54 as a function of t, Poisson's equation is

z2
-47rp(4o)

I a ao z - (55)

so that

O 'z) 2 1/2

-8T p(0')dt' + E(a)2 , (56)

41 (a)

is the electric field as i function of 1,(z). Here E(a) is an integration

constant, the field at any point z = j. If the emission energy spectrum has

a maximum energy w,(max), the boundary layer will have a maximum extent zmax

and the maximum potential will be 1$aax • -w (max)/e -4 ), :.nd E(:a) = 0.~axmax max
. the electric fietj %ll be

I J€,'-,)
E(z) = - 811 J • ",• (1572

Ita.

If the emission energy spectrum ik.-. '1-'cnuro of arhitr-.i'Jv high energy, then
Zma = •, E(-) = 0, and Equation 57 will still hold with , . . Integrat-
max 

n t11r t

ing once again,

18



f f'z . .fdO' - sirf (e)¢" (8

0 'max

The inverse of 58 gives O(z) and completely solves the one-dimensional

steady-state problem. This solution was given by Hale for several spectra 2 .

Equations S7 and 53 give for the electric field at the surface

0 w z (max)
2 8 mx - e 2dd" (59)

"max -eO' z

Interchanging the orders of integration permits the 0' integral to be done.

Let w1 be a characteristic energy in the emission spectrum. Then we find

w (max)
2 dn
167tlr~2mw. r0 f d 4iL . (60)

Sw, ro dw
0

The integral is a dimensionless function of the emission spectrum, and

hence Equation 60 confirms our dimensional arguments in Equations 9, 8, and

7, for E(0), a - E(0)/47t, and N. a le.

The dipole moment per unit area P(z) contributed by all electrons

out to a distance z is

z

P(z) f fzp(z)dz (61)

0

Using 3E/z = 4np and integrating by parts, this can be expressed as

Pz) = • [,I(z) + zE(z)] (62)

If the emission spectrum has a maximum energy wz (max), the total dipole

moment will be

19
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4' w (max)
P P(z = 4- 4lTe ' (63)

independent of fluence as in Equation 11. If there is no maximum energy,

P(z) may diverge as z ÷. This occurs for cases S and 6, and P(z) is

only weakly dependent on fluence when z >> X D"

20



SECTION 6

ENERGY CONSIDERATIONS

The equations of motion for the electrons can be written in the

form of a conservation law by introducing the momentum densities rr and

and momentum flow tensors P.. and T.. of the particles and fields5 . Thenij ij
these equations read

a ax-(7i * Gi) ÷ T (P~* + T..) = 0, (64)
J .3 1

where

fi Jmv.fd v

Pi.= mvivjfd3 v

. = -- (tBx-•rc

T I L (12 + B2 )6 (EE. + B.B A

ij 4r [ (E2 )Ei6 1 3ij

In steady state one dimension, the time derivative and x and y derivatives

in 64 vanish, leaving

-z (Pi3 + Ti 3) 0, (65)

so that P + T is independent of z. In the present problem, E = E6

B = 0, so the i = 3 component of 65 reads

v fd2 v - 7-T constant. (66)

21



I!

At large z, both terms on the left hand side of 66 separately vanish, so

the constant is zero. The energy density stored in the electrostatic field
is

u- E (67)

and the density of z component of kinetic energy, k 7 is

k= -- .mv2 fd3v , (68)

so that 66 implies

u ' 2 k (69)

The electrostatic energy density is everywhere twice the z kinetic energy

density. With a cos6 emission distribution, f is independent of angles so

the x and y contributions to the kinetic energy, kx, and k y are each equal

to k . The total kinetic energy denbity is
Sk= +k + k

x y z

f•- f mv2 f d3v

=3 k , (70)

and Equation 69 implies

uE = k (71)

Integrating on z, the total itored electrostatic energy

7max

UE= fuE(z) dz

0

and the total stored kinetic energy

22
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mdx

;I x
K - k(z) dz

0

are related by

uE K . (72)

23



SECTION 7

SEVERAL EXAMPLES

In this section we collect some formulas and graphs for four

interesting examples.

Example 1 - Nionoenergetic Normal Emission

Electrons are emitted normally at r 0 elecs/cm2/sec all with energy

w mv This caf•c was first discussed by Karzas and Latter 1'
1 2 1.

The number density at = 0 is

n(O) = 2r /V , (73)

and the Debye length, Equation 3, is

r= t" (74)

The maximum distance the electrons travel is

- (75)
max D -

The electric field at the surface is

E(O) 4 J¥•mro\"
[((1) = 0 1

4 W I
(7o)

3 e: max

24



The surface charge density is

a = V /-o (77)
0 1

and the total number of electrons is

S3(0)z elecs (78)
S e 4 2max(

The number density is

/Za)-2/1
n(z) = n(O) (1 - max) (79)

and diverges as z - za. The electric field and potential are

1/3
E(z) = E(O) (1 --:/z (80)

max

4(z) = -- j(1 - :/z- 4 1 . (81.

and the dipole moment is

P eN esu/cm (82)
43,e 4 s max

The stored k.netic energy is

I =83)

and the stored electrostatic energy is

U 2 K, (84)

since there is no x or y motion.

The time for an electron to reach : is

tMax- -8m)

25



An electron's trajectory is

v(t) = v [1( - t/ttax)2 0 < t < t tax (86)

Zt - Z SaxP - (I - tlumax) 0 < t < tmax (87)

and

vtz) - vlC1 - z/z ax)2/3 88'
~~U max

An electron leaving the surface sees an electric field decreasing linearly

with time.

The number density n(z)/n(O) and electric field E(z)/E(O) normalized

to their value at z = 0 are shown as curve 1 in Figures 3 and 4. The normalized

potential, -eO/wI, is shown as curve I in Figure 5.

Example 2 - cose angular distribution, monoenergetic energy distribution

(case 1 of Section 3). This is the same as a normal emission,

constant spectrum, and was discussed by Hale 2 . Here

dni = rO6(w w1)

and, with v I = 2w 1 m. we find

4r0

n(O) - A (89)

vI

B /2b (90)
1(16e r 0

nm a x .= "./Z" (9 1 )

E(O) = -4.2mr vl/3
0w 1

WI.-.-

26
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n (z) - n(o) (I - z/zmax), (9s)

3I
E(z) a EC0) (1 - zlZmax), (96)

E(z) E(-) (1 - z/Zmx) , (97)

w(z - (-L/ -1 (7

1
4we 4 s max (98)

KZ = WNs (99)
2

UE 2 K K (100)

v(z) W v(1 - z/zmax) 2  
(101)

The maximum distance Zimax (wZ) an electron with z component of energy wz,
0< w< w , will go is

z~ (w ) a Z [ (1-w,'/w 1 /4J (102)maxz max

Trajectories and turn around times involve elliptic functions, but in the
case of a particle emitted with energy wz * W1/2, we find

t (w 0.49 zmaxmax(z • wI) - V (103)

The number density, electric field, and potential are plotted as
curve 2 in Figures 3, 4, and S.
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-Exale 3 cosO angular distribution, linear times exponential energy

distribution (case 6 of Section 3). In this example the inte-

grals in Equations 57 and S8 can be done analytically.

dn ro "w/WI
-we

We find
r0

n(0) : 2 , (104)

D= 83/2e2r (l0S)
ID F811T3 -

Define

which is the Debye length at the surface of the electrons which are leaving

the surface. Then

E(O) * 4 8l$/ 2 mr0vI

2w (106)

a = 4mrovl/2q• (1{07)

N5 s n(0)tl , (108)

n(--) = n(O) (U + z/, (109)

E(z) = E(O) (1 * z/9,l) - (110)
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S(z) =In (1 Z/Zl) (III)

Kz IWINs (112)

l 2K K (113)

The dipole moment per unit area due to electrons out to z is

P(z) = 2t n(Il + z/Xl) - z (114)

For z >> k this depends only logarithmically on the fluence through ZI"

An electron emitted with velocity v and energy w mv2 has

velocity

V(Z) V 2 - Ln( + z/Zl)}1/2 (115)

and reaches maximum distance

(w/2w1z a(v) = 1e/2l- I)(116)

max 1V

in a time

t w/2w1
t (v) 24 _ 1 1

tmax1 e erf(v/V2vl) , (117)

where erf(x) is the error function. For v - v1,

tmax (vl) 1.405 (118)

Figures 3, 4, and S show n(z), E(z), and O(z) in curve 3.
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Exuple 4 - cose angular distribution, exponential energy distribution
(case S of Section 3). This distribution corresponds closely

with the experimental distributions for blackbody photon sources.

The complete solution cannot be obtained in closed form.
r- wI ~/wl

dn r0 r 1
a- e

V, -

We find

r
nr0) -4V' , (119)

4 W (120)D 16 1
3/22

ECO) = Y16Tr/ mroyl/3 , (121)

0 "mrdl/$V , (122)

N- n(O) (123)

As a function of the dimensionless potential

-eo(z) (124)
wI

the number density and electric field are

n = n(O)[e - VT erfc(VM)] . (125)

E - E(0)[(1 - -4)e', 5/2 erfc(*M )1/2 (126)

The inverse of 4(z) is
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Z fdý[(I - 24)e-' + ÷ O'3/2 erfc(("/ 127)

0

Here, erfc(x) is the complementary error function 1 - erf(x). Figures 3,

4, and 5 show n(z)/n(O), E(z)/E(O), and 4)(z) obtained from a numerical

evaluation of Equations 125 through 127. The abscissae in Figures 3, 4,

and 5 are scaled to the Debye lengths Equations 74, 90, 105, or 120,

appropriate to each example.

The asymptotic behaviors are

n(z) n(o) -'- D (128)
z

Z (129)
z

2' - 0__ 
(130)

so that P diverges logarithmically. For z << LD we find

n(z)÷ n(O) [1 - 1.602JD] , (131)

[I r7-z
E(z) E O) -_ -3 (132)

Cr -"J (133)

D

so that dn(z)/dz diverges at the surface.

The dipole moment, Equation 62, diverges logarithmically with P

and is only weakly dependent on fluence, as was the case in Example 3.

P(z) vs. z is shown in Figure 6.

34



0 5 10 15 20 25 30 35 40 45 50

Z/z/D

Figure 6. Dipole moment vs. distance from surface.

An electron ejected with z component of velocity vzO and wz(O) 2

myv2 has z component of kinetic energy at z given by

Wz(z) = Wz(O) + e4(Pz) , (134)

which is shown in Figure 7 for several values of w (0), showing how various

particles slow down with distance from the surface. The maximum distance such

a particle will go, zmx(W Z(O)), and the time tmax(w z(0)) to reach this

distance are shown in Figure 8. Particles ejected with wz < w, go less than

two Debye lengths.

The total stored kinetic energy is

K= 3K
z

= 1.012 wIN , (135)

where K is the total kinetic energy stored in the z component of motion,z
and the energy in the electric field, UE, is 2K/3 in accordance with Section 6.
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Figure 7. z component of kinetic energy vs. distance
from surface.
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Figure 8. zm~ and tmax as a function of normal
emis sion energy.
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- Values of the Debye lengths, Equation 120, are given in Reference

4.

Referring to Figure 3, we see that in this example the number

density drops off very rapidly at first, falling to half its surface value

in less than 1/4 Debye length. Both of the finite energy spectra, Examples

1 and 2, give a very poor representation of the electron density. In

Example 3 the absence of the low-energy electrons causes the density to

drop off more slowly than in Example 4.

The low-energy electrons double the surface value of n, Equations

104 and 119. The electric fields have a very similar behavior as seen in

curves 3 and 4 in Figure 4.

In Example 4, Figure 6 shows that the dipole moment varies slowly

with distance, remaining of order wI/4re for many Debye lengths. But at one

Debye length it is only 0.11 w1 /47re.
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SECTION 8

SUMMARY

We have presented the solution of the steady-state one-dimensional
boundary layer problem, summarizing previous work and presenting the solution
for the interesting exponential energy spectrum in some detail.

Tn general we find both the electron number density at the surface

and the surface charge density (and also, therefore, the electric field at the

surface) are independent of the electron charge. The characteristic potential

of the layer and the dipole moment per unit area depend only weakly on the

fluence in the case of an exponential energy spectrum. General principles

imply that the energy stored in the electric field is just twice that stored

in the kinetic energy of the normal component of motion.

Estimates for the times at which the steady-state solution should

apply show it to be valid if the X-ray flux changes only slightly in about

1 nanosec for fluences above 10-3 cal/cm2.
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